ENVIRONMENTAL PRODUCT
DECLARATION

DOMO
 caring is our formula

TECHNYL:4EARTH Sustainable polyamide

 C2E 216 (COLOR) H

 C2E 216 (COLOR) H unfilled \& reinforced

 unfilled \& reinforced}

Based on

PCR 2010:16 (versions 3.01). Plastics in primary forms UN CPC 347

Certification number

S-P-01079

Date of publication

2017-09-29

Date of validity

2026-08-05

Programme

The International EPD ${ }^{\circledR}$ System
www.environdec.com

Revision Date

2023-02-15
Version: 03
Editorial change: new product name and new product image.

Programme operator

EPD International AB

THEGROUP

DOMO
 caring
 is our formula

DOMO Chemicals is a leading producer of high-quality engineering nylon materials for a diverse range of markets, including the automotive, food, medical, pharmaceutical, chemicals and electronics industries.
The company offers a complete portfolio of integrated nylon 6 and 66 products, including intermediates, resins, engineering plastics, performance fibres and distribution of petrochemical products. Headquartered in Germany, the family-owned company leverages advanced technology and consumer insights to deliver sustainable \& innovative solutions.

The Company

The Company DOMO Engineering Plastics Italy S.p.A is part of DOMO Chemicals with several production units and professional teams in Germany, Italy, France, China, India and US.
The synergies between our state-of-the-art compounding plants support our strategy to continuously grow our innovative capabilities and provide globally a high quality product line and excellent service levels. DOMO Engineering Plastics Italy S.p.A implemented a new inte8rated Quality and Environment Management system and aligns itself with the new ISO 9001: 2015 and ISO 14001: 2015. The environmenta behavior of our industry's businesses and companies is indisputable one of the most important issues of the last decade
Businesses need to acknowledge their responsibilities and act accordingly. We at DOMO have decided early on to do everything in our power to reduce our ecological and carbon footprint. We have been creating links between different industries to provide our customers with ecological friendly products and raw materials of excellent quality.

Our approach to sustainability

Sustainability is deeply anchored in our vision and mission for the company and is one of four strategic pillars for the Group. We are driving a carefully planned transformation for our sustainability journey to be successful. As an active actor, DOMO is committed to its ambitious targets and takes its responsibility seriously to become climate-neutral by 2050.

Clear priorities and sustainability targets: Discover our 2030 agenda

By 2030, we are committing to a neutral CO_{2} emissions growth versus 2019, a 15% reduction in the carbon content of DOMO's energy mix and a 7% reduction of industrial waste.

We are also pledging to support our customers by enhancing our offering of sustainable solutions, including a 20% reduction in the carbon footprint of DOMO's products.

With the recently Care to be Safe launch, we embarked on a journey to provide a safe workplace, aiming for Zero incidents, with common principles and values for employees and contractors at all locations. We are also implementing clear and measurable commitments and obligations related to HR practice areas like recruiting and development, compensation, employment contracts, diversity and inclusion to become an employer of choice, ahead of industry benchmark and aiming for 80% employee engagement.

Sustainability is the only valuable performance

Our Global Presence

THEPRODUCT

Detailed product description

The TECHNYL® 4EARTH ${ }^{\oplus}$ Engineering Plastics range offers a complete assortment of PA6 compounds, based on high quality pre-consumer fiber feedstock coming from carpet and textile production. Thanks to the deep connection with the textile industries DOMO has been able to secure long term supply agreements of this valuable raw materials. The line includes unfilled, filled, glass fiber reinforced versions, as well as flame retardants alternatives.
The EPD refers to 100% reprocessed PA6 compounds, which is used in several end markets such as automotive, railways, agriculture, electric \& electronic and building \& construction applications. The declaration refers to TECHNYL® 4EARTH ${ }^{\circ}$ C2E 216 (Color) H and TECHNYL® 4EARTH ${ }^{\circ}$ C2E 216 V30 (Color) H:

trade Name	TECHNYL® 4EARTH ${ }^{\circ}$ C2E 216 (Color) H	TECHNYL® 4EARTH ${ }^{\ominus}$ C2E 216 V30 (Color) H
ISO CODE	PA6	PA6-GF30
IUPAC NAME	Polycaprolactam	Polycaprolactam
CAS Number	25038-54-4	25038-54-4
CLASSIFICATION ACCORDING TO GHS	not dangerous	not dangerous
DENSITY [8/cm ${ }^{3}$] ISO 1183	1.14	1.36
TENSILE MODULUS [Mpa] ISO 527	3000	9000
CHARPY NOTCHED [kJ/m²] ISO 179/1EA	5.5	6
HEAT DEFLECTION TEMPERATURE (HDT-A) [MPa] ISO 75	70	200
FLAMMABILTY [Class] UL94	нв	нв

CONTENT DECLARATION

TECHNYL® ${ }^{\oplus}$ EARTH ${ }^{\oplus}$ C2E 216 (Color) H does not contain any materials / substances hazardous to health and the environment (carcinogenic, mutagenic or toxic to reproduction, allergic, PBT, vPvB).

TECHNYL® 4EARTH ${ }^{\oplus}$ C2E 216 V30 (Color) H does not contain any materials / substances hazardous to health and the environment (carcinogenic, mutagenic or toxic to reproduction, allergic, PBT, $v P v B$)

PACKAGING

THEPROCESS

Pre-consumer scrap from spinning process represents TECHNYL® $4 E A R T H^{\circledR}$ feedstock classified as secondary material or recycled according to ISO 14021.

DOMO collects different spinning plastic scraps in form of coil, bales and loose fibres from textile industries and reprocess them for TECHNYL ${ }^{\oplus}$ 4EARTH ${ }^{\oplus}$ production. The pre-treatment is purely mechanical, fibres are cut and milled before being poured in the feed hopper placed on the head of the extruder; other raw materials (i.e. glass fibre, masterbatch, additives) are dosed according to the standard recipe during the compounding phase. Once the Bill of Material (or BOM) is finalized, the extruder melts the raw materials through proper heating systems and force them into a die. The resulting strands are then cooled into water and pelletized.

The ready-pellet product is then packed in bags, octabin and tank for delivery to the final enduser.

TECHNYL® ${ }^{\circledR}$ 4EARTH ${ }^{\circledR}$ - Production Cycle

UPSTREAM PROCESS

CORE
 PROCESS

DOWNSTREAM
 PROCESS

ENVIRONMENTAL PERFORMANCE

The detailed environmental performance (in terms of use of resources, waste generation, potential environmental impacts) is presented for the three phases:
Upstream, Core and Downstream

Declared unit (D.U.)

This study uses 1 kg of TECHNYL® 4EARTH ${ }^{\circledR}$ compound delivered in pellet form and packed in bags, tanks and octabins

TECHNYL® 4EARTH ${ }^{\circ}$ C2E 216 (COLOR) H						
ENVIRONMENTAL IMPACT INDICATORS		UNIT OF MEASURE	UPSTREAM	CORE	DOwnstream	TOTAL
fossil		$\mathrm{Kg} \mathrm{CO}_{2}$ eq	1,16E-01	9,15E-02	1,21E-01	3,28E-01
Global Warming Potential	biogenic	$\mathrm{Kg} \mathrm{CO}_{2}$ eq	1,55E-04	2,25E-04	6,06E-06	3,86E-04
(GWP)	land use and land use change	$\mathrm{Kg} \mathrm{CO}_{2}$ eq	2,54E-04	1,21E-06	1,05E-06	2,56E-04
	TOTAL	$\mathrm{Kg} \mathrm{CO}_{2}$ eq	1,16E-01	9,17E-02	1,21E-01	3,29E-01
Acidification potential, AP		$\mathrm{kg} \mathrm{SO}_{2}$ eq	6,93E-04	8,16E-04	3,86E-04	1,90E-03
Eutrophication potential, EP		$\mathrm{kg} \mathrm{PO}_{4}-$ - eq	8,23E-05	9,23E-05	5,71E-05	2,32E-04
Photochemical oxidation potential, POFP			4,27E-04	7,47E-04	4,18E-04	1,59E-03
Abiotic impoverishment potential - elements		${ }^{k g}$ Sb eq	1,66E-07	5,10E-09	9,40E-09	1,80E-07
Abiotic impoverishment potential - fossil fuels		MJ, net calorific value	2,46E+00	1,27E+00	1,63E+00	5,36E+00
Water scarcity potential		m^{3} ea	9,87E-02	2,08E+00	0,00E+00	2,18E+00

ENVIRONMENTAL IMPACT INDICATORS		UNIT OF MEASURE	UPSTREAM	CORE	DOWNSTREAM	TOTAL
Global Warming Potential (GWP)	fossil	$\mathrm{Kg} \mathrm{CO}_{2}$ eq	7,64E-01	1,04E-01	1,21E-01	9,89E-01
	biogenic	$\mathrm{kg} \mathrm{CO}_{2}$ eq	1,37E-03	2,17E-04	6,06E-06	1,59E-03
	land use and land use change	$\mathrm{kg} \mathrm{CO}_{2}$ eq	8,08E-04	1,42E-06	1,05E-06	8,10E-04
	TOTAL	$\mathrm{kg} \mathrm{CO}_{2}$ eq	7,66E-01	1,05E-01	1,21E-01	9,91E-01
Acidification potential, AP		$\mathrm{kg} \mathrm{SO}_{2}$ eq	5,00E-03	8,55E-04	3,86E-04	6,24E-03
Eutrophication potential, EP		$\mathrm{kg} \mathrm{PO}_{4}{ }^{-}$- eq	9,94E-04	9,76E-05	5,71E-05	1,15E-03
Photochemical oxidation potential, POFP		k8 NMvoc eq	3,37E-03	7,86E-04	4,18E-04	4,58E-03
Abiotic impoverishment potential - elements		kg Sb eq	2,73E-05	5,88E-09	9,40E-09	2,73E-05
Abiotic impoverishment potential - fossil fuels		$\begin{gathered} \mathrm{MJ}, \\ \text { net calorific value } \end{gathered}$	1,26E+01	1,45E+00	1,63E+00	1,57E+01
Water scarcity potential		m^{3} eq	2,17E-01	2,04E+00	0,00E+00	2,26E+00

TECHNYL ${ }^{\circ}$ 4EARTH ${ }^{\circ}$ C2E 216 (COLOR) H

USE OF RESOURCES		UNIT OF MEASURE	UPSTREAM	CORE	DOWNSTREAM	TOTAL
Primary energy resources Renewable	Use as energy carrier	MJ , net calorific value	1,14E-01	2,51E+00	2,39E-03	2,63E+00
	Used as raw materials	MJ, net calorific value	4,70E-01	0,00E+00	0,00E+00	4,70E-01
	TOTAL	MJ, net calorific value	5,84E-01	2,51E+00	2,39E-03	3,10E+00
Primary energy resources -Non-renewable	Use as energy carrier	MJ , net calorific value	1,83E+00	1,27E+00	1,63E+00	4,74E+00
	Used as raw materials	MJ , net calorific value	8,18E-01	0,00E+00	0,00E+00	8,18E-01
	TOTAL	MJ , net calorific value	2,65E+00	1,27E+00	1,63E+00	5,55E+00
Secondary material		kg	1,53E-02	1,01E+00	0,00E+00	1,03E+00
Renewable secondary fuels		MJ, net calorific value	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Non-renewable secondary fuels		MJ, net calorific value	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Net use of fresh water		m^{3}	3,37E-03	4,63E-02	3,98E-05	4,97E-02

TECHNYL ${ }^{\circ}$ 4EARTH ${ }^{\circ}$ C2E 216 V30 (COLOR) H						
USE OF RESOURCES		UNIT OF MEASURE	UPSTREAM	CORE	DOwnstream	TOTAL
Primary energy resources Renewable	Use as energy carrier	MJ, net calorific value	9,27E-01	2,33E+00	2,39E-03	3,26E+00
	Used as raw materials	MJ, net calorific value	4,70E-01	0,00E+00	0,00E+00	4,70E-01
	TOTAL	MJ, net calorific value	1,40E+00	2,33E+00	2,39E-03	3,73E+00
Primary energy resources -Non-renewable	Use as energy carrier	MJ, net calorific value	1,38E+01	1,46E+00	1,63E+00	1,69E+01
	Used as raw materials	MJ, net calorific value	1,15E+00	0,00E+00	0,00E+00	1,15E+00
	TOTAL	MJ, net calorific value	1,50E+01	1,46E+00	1,63E+00	1,81E+01
Secondary material		k8	1,53E-02	6,95E-01	0,00E+00	7,10E-01
Renewable secondary fuels		MJ, net calorific value	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Non-renewable secondary fuels		MJ, net calorific value	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Net use of fresh water		m^{3}	1,02E-02	4,56E-02	3,98E-05	5,58E-02

TECHNYL® 4EARTH ${ }^{\circ} \mathrm{C} 2 \mathrm{E} 216$ (COLOR) H					
WASTE	UNIT OF MEASURE	UPSTREAM	CORE	DOWNSTREAM	TOTAL
Hazardous waste disposed	k8	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Non-hazardous waste disposed	k8	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Radioactive waste disposed	k8	5,12E-06	8,47E-06	1,21E-05	2,57E-05

WASTE	UNIT OF MEASURE	UPSTREAM	CORE	DOWNSTREAM	TOTAL
Hazardous waste disposed	k8	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Non-hazardous waste disposed	k8	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Radioactive waste disposed	k8	4,29E-05	9,60E-06	1,21E-05	6,47E-05

OUTPUT FLOWS	UNIT OF MEASURE	UPSTREAM	CORE	DOWNSTREAM	TOTAL
Components for reuse	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Material for recycling	k8	2,27E-03	9,18E-02	1,77E-02	1,12E-01
Materials for energy recovery	k8	0,00E+00	0,00E+00	1,10E-02	1,10E-02
Exported energy, electricity	mJ	0,00E+00	0,00E+00	2,63E-03	2,63E-03
Exported energy, thermal	mJ	0,00E+00	0,00E+00	5,50E-03	5,50E-03

TECHNYL® ${ }^{\text {4EARTH }}{ }^{\circ}$ C2E 216 V30 (COLOR) H					
OUTPUT FLOws	UNIT OF MEASURE	UPSTREAM	CORE	DOwnstream	TOTAL
Components for reuse	k8	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Material for recycling	k8	2,27E-03	9,18E-02	1,77E-02	1,12E-01
Materials for energy recovery	k8	0,00E+00	0,00E+00	1,10E-02	1,10E-02
Exported energy, electricity	mJ	0,00E+00	0,00E+00	2,63E-03	2,63E-03
Exported energy, thermal	mJ	0,00E+00	0,00E+00	5,50E-03	5,50E-03

OTHER ENVIRONMENTAL INDICATORS

In addition to the main environmental impact indicators, there are additional indicators, which must be declared in accordance with the provisions of the PCR 2010:16 v.3.01 "Plastics in primary forms".
Always referring to the declared unit, these are:

- The energy content of products accounted, considered the gross calorific value of the product in $M J$, is the one that can be recovered at the end-of-life. In the following table, the value of the energy content of product for the different types of products is reported
TECHNYL® 4EARTH ${ }^{\circ}$ C2E 216 V30 (COLOR) H
26,27 MJ/k8
TECHNYL® 4EARTH ${ }^{\circ}$ C2E 216 (COLOR) H
38,29 MJ/k8
- The primary energy demand, differentiated between Non-renewable primary energy resources and Renewable primary energy resources, is already accounted for among the main environmental indicators and measured in MJ
- The bio-based material content declared as a percentage is 0\%.

In addition to the environmental indicators, the PCR also requests the following information:

- This EPD refer to a mechanical recycling process, where selection, grinding, extrusion and packaging are most relevant phases
- The per cent of recovered materials with respect to the total waste treated is 97\%
- The fractions not recovered are sent to recyclin8.

DIFFERENCES VERSUS PREVIOUS VERSIONS

The current EPD follows the requirements of the new versions of the GPI (v 3.01) and the PCR 2010:16 (v. 3.01). The input data has been updated to the last available set (2020) as well as the energy mixes. The datasets have been updated to the latest version of Ecoinvent 3 .

REFERENCE

EPD REFERENCES

DOMO ENGINEERING PLASTICS ITALY SPA (VIA LINFANO 18 - 38062 ARCO (TN) ITALY

PROGRAM OPERATOR: EPD International AB, Box 210 60, SE-100 31 Stockholm, Sweden, E-mail: info@environdec.com

LCA REPORT: Life Cycle Assessment applied to TECHNYL® 4EARTH ${ }^{\circ}$ Compounds v04
REFERENCE DATABASE: Ecoinvent 3.6
SOFTWARE: SimaPro ver. 9.1.1.1 (www.pre.nl)

INDEPENDENT VERIFICATION

This declaration has been developed referring to the International EPD System, following the General Programm Instructions; further information and the document itself are available at: www.environdec.com. EPD document valid within the following geographical area: Italy and other countries according to sales market condition (Europe).

PCR review was conducted by: The Technical Committee of the International EPD System.
PCR 2010:16 (versions 3.01).
Plastics in primary forms, UN CPC 347
Sessa.
Contact via info@environdec.com

Independent third-party verification of the declaration and data, according to ISO 14025:2006

Third party verifier: U80 Pretato, Recognized Individual Verifier, Corso Vittorio Emanuele II 18-10123 Torino, Italy

Approved by: International EPD System. Procedure for follow-up

```
\(\square\) no
``` of data during EPD validity involves third-party verifier:

\section*{\(\square\) YES}

EPDs within the same product category but from different programmes may not be comparable. EPD owner has the sole ownership, liability and responsibility of the EPD.

\section*{CONTACTS}

To get more information about this environmental declaration or about Domo activities please contact:
Elisabetta Testa (elisabetta.testa@domo.or8)
+39 0464587676 www.domochemicals.com

Technical support to Domo was provided by Life Cycle Ensineering, Italy. (info@studiolce.it, www.Icengineering.eu)

\section*{CHANGES VERSUS PREVIOUS VERSION}

The version v3 of the current EPD includes the following editorial change from the previous version v2 in order to have the new product reference name aligned
" ECONAMID®: TECHNYL® 4EARTH \({ }^{\circ}\)
"FL 6: C2E 216 (Color) H
» FL 6G30 : C2E 216 V30 (Color) H
```

